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Abstract Authors

Modern plant breeders face a toughndip Debnath
insurmountable challenge to feed the worl@gpartment of Genetics and Plant Breeding
rapidly expanding population. Insect péxilli Siksha Bhavana
attacks, disease severity, and nutrigigva-Bharati University
deficiency have all reduced agricultural crggest Bengal, India
yield in recent years. Every day, we face saihdip.debnath@visva-bharati.ac.in
increasing challenge in satisfying the
demands of the expanding population. ™®ourish Pramanik
accomplish the same, it is vital to usBepartment of Genetics and Plant Breeding
multidisciplinary techniques to find answerpalli Siksha Bhavana
to current problems. We've recentlyisva-Bharati University
witnessed a paradigm change towaBlrbhum, West Bengal, India
employing omics information, methods, ansburishpramanik2002@gmail.com
technology to boost agricultural productivity.
Crop genotype and phenotypic data providgibyendu Seth
by the omics era has opened several dodgpartment of Genetics and Plant Breeding
This will prove to be a vital tool forpPalli Siksha Bhavana
enhancing agricultural output and farmerisva-Bharati University
incomes. A recent development iBirbhum, West Bengal, India
agricultural technology is the use of artificialeep032002@gmail.com
intelligence (Al). High-performance, precise,
and cost-effectiveness are only few of tiBiswajit Pramanik
advantages of Al in agriculture. IdentifyingDepartment of Genetics and
cloning, and sequencing genes that hehpant Breeding
plants tolerate harmful environmentaballi Siksha Bhavana
impacts should be made easier with a betigigva-Bharati University
understanding of plant genomicBirbhum, West Bengal, India
Agricultural and food industries, inbiswajit1996pramanik@gmail.com
particular, are rapidly evolving, and machine
learning has recently been recognized as a
feasible multidisciplinary technique for
enhancing and upgrading such industries.
Bioinformatics and artificial intelligence
might be used to find the genome and its
variations, which could then be used to
genetically edit crops in the future, according
to this paper's focus on plant multi-omics.
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. BACKGROUND

Sustainable agricultural productivity and food séguare critical challenges in light
of growing populations, environmental degradatiang climate change [1]. Crops provide
more than two-thirds of the energy we use eachagapndividuals. As the world's population
continues to rise, agriculture is under increagmmgssure to provide more food. Further
agricultural concerns are posed by climate chalagel, scarcity, and water limits. Additional
food security issues have been exacerbated byettent rise in demand for biofuel crops,
which has created a new market for agriculturadpots. A number of genetic applications
have provided several chances for integrating treefits of subsystems biology, integrative
biology, and large-scale systematic functional geicgorogrammes in order to tackle these
issues. The area of plant molecular biology is peging thanks to the discovery of
important gene sequences and their functions. Gha¢$ave been attributed to crop yields,
quality, and resistance to biotic and abiotic avales have been identified [2, 3].

Arabidopsis thaliana's whole genome has been &aila scientists since 2000. P.
149) of the International Arabidopsis Genome It There has been a complete genome
sequencing of rice (Oryza sativa cv. japonica) esi2005 (International Rice Genome
Sequencing Project 2005) A combination of 454 seqiug and Sanger sequencing was used
for the first time to sequence the grape genomesimMice was still sequenced using BAC
and Sanger sequencing. Agriculture accounted foof4fie 55 plant genomes sequenced as
of 2013. There are 237520318 sequences in GenlsaoikAgpril 2022 (https : / / www . ncb .
nim.nih.gov/genbank/statistics/).

Plant genome research needs bioinformatics, wiichaquired in order to handle and
analyze the massive volumes of genomic data. Tgerteration sequencing data presents a
challenge for many algorithms designed for shatse Crop improvement may benefit from
comprehensive data provided by GWAS, variant ogllend comparative genomic analysis.
Genomic sequencing of crop populations may progeee-level resolution of agronomic
variation, quantitative trait locus (QTL) mappirand more in many areas of crop breeding,
including genome-wide association studies (GWAS).result of the ease with which
breeders may now get genetic information. Crop owpment has never had it so well thanks
to recent advances in multi-omics. [6] The "omiasp" a conceptual paradigm that ranges
from the "genome" to the "phenome," has been pepdg]. Plant phenotypic changes are
linked to changes in the structure and functiorgefies. Gene-specific molecular breeding
and the interplay between the genome, proteome, rapthbolome have led to the
development of various web-based databases thdtaddmMmassive amounts of data. Genome
sequencing is useful in improving agronomic quaditiso that genetic potential may be
harnessed to boost productivity, as a genomicsnigah. Deoxyribonucleic acid (DNA)
sequencing has become more affordable in the relematde, which has led to a rise in crop
genome sequencing, giving breeders an excess sibgies.

Using machine learning to forecast and categorata t an alternative to traditional
statistical methods (ML). Mathematical and statetiapproaches are used to train models
without the need for direct programming in machilearning. In order to produce
predictions, machine learning develops a numbedgdrithms that learn from both training
data and sample data. Non-parametric machine feafML) research on plants and animals
have employed support vector machines (SVM), bongstiandom forests, and Reproducing
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Kernel Hilbert Space (RKHS). Because they discopatterns from data without ai
previous assumptions, ML models for genomic sedac(GS) are particularly advantage«
because they take into acmt all of the variations, their interactions, amavironmenta
factors [7]. Each nucleotide has an impact on atjsighenotypic, and a scientist is intere:
in this as well. It is possible that deep learnmimight make very accurate predictions, the
models themselves are frequently quite complex,imgaik difficult to use inference to stuc
biological processes. Therefore, academics hagiven much attention to deep learn
(DL).

The flow of biological information underpinning cpiex charcteristics necessitat
an alternative systems biology approach that iresutthe integration of various omics d:
modelling, and prediction of cellular processesisTthchnique provides a full understand
of the dynamic system in which various le' of biological structure interact with tt
external environment in order to exhibit phenoty@@ne of the most popular omi
approaches in plant science is genomics. Thisestduhe fact that the cost of sequencin
decreasing and the degree of kncdge is increasing. It's possible to identify nevelak
regardless of whether or not the genome sequeramaikable, owing to the sequencing ¢
re-sequencing information gleaned for various cropanthetwork biology may help boc
sustainable agridwral yields, but a systematic approach is neefleédure 1). For th
improvement of agriculturally importe plants, the most current advances in bioinforms
and artificial intelligence are emphasized in tnitcle
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Figure 1: Pictorial Depiction of Genomics, Transcriptomics, Proteomicdyletabolomics
And Phenomics’ Integrated Applicationin Crop Improvement

Il. NEXT GENERATION SEQUENCING

Short lllumina reads and Sanger sequencing werd tsesequence the cucuml
genome in 2009, which paved the way for NGS. Ireotd discover genes and gene famil
as well as coding and noncoding areas, regulatengg} and repetitive sequences, mic
data is employed. More and more plant biologistésrautinely sequencing and resequen
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their genomes attributable to next-generation segjng (NGS). The genomes of 55 plant
species, including 40 crop species, have been segdeas of 2013. It has also been utilised
to discover genome-wide molecular phenotypes vétlesal dimensions using low-cost high-

throughput techniques. Individual, strain, and/opydation differences may be identified

using next-generation sequencing technologies afdrence genome sequence data.
Nucleotide polymorphisms may be consistently idestiin genetic research by mapping

sequence segments to a specific reference gendmseata

Plant genome assembly is still a challenge becatiseng repetitive regions, large
genome sizes, and frequent polyploidy. Howeveraades in sequencing technologies (third
generation sequencing technologies) and bioinfaosattools have enabled rapid
advancements since the rice genome was sequendedsaambled in 2005 [10]. Third-
generation sequencing permits the developmentgbituality de novo assemblies of the full
genome and provides light on the remaining compméxepetitive sequences, including
structural variations. In addition, isoform sequagcfrom third-generation sequencing
technologies enables precise investigation of exepBce sites, and alternatively spliced
regions, which helps with genome annotation. Ihasv possible to get high-quality plant
reference genomes using downstream methods swdmgsarative genomics, variant calling
and genome-wide association studies (GWAS). Thesthads give comprehensive data for
crop improvement. Longer reads and more accurateantiguous genome assemblies have
been made possible because to third-generatioreseitpg, such as single-molecule real-
time sequencing (PacBio) and sequencing by Oxfoahdgdore Technologies (ONT).
Agricultural genome sequencing has become moreaetein recent years because to the
development of third-generation sequencing techgyloapable of producing long reads
longer than 10 kilobases (kb).

It is now possible to produce highly contiguousnplgenome assemblies even for
non-model crop species and smaller facilities beeao long-read sequencing, long-range
mapping and chromosomal conformation capture. Regesequences may also be found
via long-read sequencing. Large DNA molecules ssipg 250 kb may now be labelled
quickly and cheaply using new optical mapping mdthsuch as BioNano Genomics. Hi-C
(Chromosome conformation capture sequencing) isird-generation mapping technology
that depends on the physical tightness of DNA segsnéo be mapped. For example,
chromosome phasing and scaffolding may be improwghificantly when Hi-C
measurements and optical mapping are used tog&kennstruction of the barley genome
with a N50 of 1.9 Mb was achieved by Mascher anlleagues using short reads, optical
mapping data, and chromatin interaction mapping.dbhird-generation sequencing has the
potential to improve genomics-based breeding aghesm such as trait mapping, because to
its improved sequence continuity. Use of third-gatien sequencing in crop breeding has
been most effective in creating enhanced, highltigaous crop genomes. Due to intrinsic
bias and inadequate repetitive sequence matchingG®, extremely fragmented partial
genome assemblies are created that make it mdiieuttifto find and study hidden In-
Dels and structural variations.

It was a common practise in crop breeding to @tifghenotypic selection and cross-
breeding cycles to produce improved genotypes. tiedwersity in agricultural species may
now be identified via genomics-based breeding amdrhged to build climate-resistant crops
[12]. All genes and genetic variations connectedgmnomic traits may be discovered once

Copyright © 2022 Authors Page | 31



Futuristic Trends in Biotechnology
ISBN: 978-93-95632-83-6
IIP Proceedings, Volume 2, Book 26, Chapter 3
USE OF ARTIFICIAL INTELLIGENCE AND BIOINFORMATICS
FOR CROP IMPROVEMENT TO ENSURE FUTURE FOOD SECURITY

the genome sequences are accessible, and breedihifjications can be assessed at the
genotype level once they are. Several parts of bmgeding, such as QTL mapping and
GWAS, where genomic sequencing of crop populatimay offer gene-level resolution of
agronomic variation, are becoming more importanbr@eders now have access to genomic
data. Genomics research is the focus of the dagabag able 1.

Table 1: Databases in use of Plant Genomics Resédarc

Database URL
Phytozome v8.0 http://www.phytozome.net/Phytozomi®.php
Gramene http://www.gramene.org/

Home—BioProject—NCBI | http://www.nchi.nlm.nih.govwas/entrez?db=bioproject
BLAST: Basic Local
Alignment Search Tool
GrainGenes Class Browser http://wheat.pw.usda.gov/c
bin/graingenes/browse.cgi?class=marker

http://blast.ncbi.nim.nih.gov/Blast.cqi

PlantGDB— Resource Plai

L :
Comparative Genomics thttp.//www.plantgdb.org/

TreeView http://taxonomy.zoology.gla.ac.uk/rod/triesv.html
GenBank https://www.ncbi.nlm.nih.gov/genbank/
European Molecular
Biological https://www.embl.org/
Laboratory (EMBL)
ngvtv'\(/)lmel\r/liner) (Knowledge https://knetminer.com/
LALIGN Server http://www.ch.embnet.org/software/LA&N_form.html
PopGene http://www2.unil.ch/popgen/softwares/fistat.
Arlequin 3.11 http://cmpg.unibe.ch/software/arletdli
PRIMER-E http://www.primer-e.com/

. QTL MAPPING

An organism's genome, made up of all its geneddd, is the subject of genomics.
Unlike genetics, which focuses on genes and tlugictfon in heredity, genomics studies the
aggregate description and measurement of an organgenes [13]. System biology even the
most complicated biological systems may now beebeihderstood thanks to advances in
genomics. It is possible to get new insights oncafural plant sustainability by generating
genomic resources in a variety of methods, inclgdmolecular markers, transcriptome
assemblies and biparental population mapping, gehekage maps, comparative genome
mapping, and functional genomics.

It is now possible to clone QTLs, create genetigpsnaand use marker-assisted
selection in different segregating populations Ksato many high-throughput genotyping
technologies. Genetic markers that cover a largégmoof a genome may also be used to
research genetic diversity in connection to natwaliation, in addition to discovering
specific genes linked to complex characteristicanil species have undergone genome
sequencing and extensive Expressed Sequenced B9 (EBsearch, which has resulted in
excellent sequence resources for the developmanbticular markers. All SNP marker sets
are integrated in the anticipated model, which Iy whis is the case. For a number of plants,
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such as barley, melon, Brassica, common bean, @amftbwer, computational identification
of EST base single-nucleotide polymorphisms and&8iT-SNP markers for discovering
sequence-tagged site markers has advanced [186,157, 18]. QTLs may be predicted more
accurately with the use of a meta-qgtl analysisafenQTLs are detected. MetaQTL decreases
the QTL's confidence interval in order to precisafficipate the QTL's location and impact
on a given sample. Low-bias QTL analysis, dataalisation, and interoperability with other
genome databases are all features of both SolQ@IRASQUAL. A Meta-QTL analysis has
been utilised to discover features linked with cgopwth and abiotic and biotic responses in
maize [19], cotton [20], soybean [21], or wheat][ZBvo drawbacks to this method are that
it is difficult to distinguish between pleiotropand physically nearby genes because of poor
mapping, and only the allelic diversity found inrgrats of a segregating population can be
analyzed.

IV. GWAS & GENOMIC SELECTION

There is an alternative to QTL mapping called GWMSId populations are the basis
for GWAS, whereas biparental populations obtainedmf controlled crossings lay
the foundation for QTL analyses. Multiple recondiion events may be found with greater
ease, and natural variances linked with phenotggferences can be examined with more
clarity as a result. More precise GWAS mapping tarL analysis identifies MTAs that
may be linked to the amount of linkage disequilibwi (LD) across polymorphic markers
across a wide range of genotypes. The breedefar@nee for GWAS over QTL analysis is
to evaluate a wide genetic base in order to rekesaeeral potential genes for inclusion in
breeding programmes. Genetically-modified organigrase first utilised in the study of
complex human traits. This decade has witnessed SW¥ere used to several crops
including canola, rice and soybeans as well as andhwheat [23—-26]. Polygenic traits make
it more difficult to pin down the source of a traBased on genetic estimates of breeding
values (GEBV) in an individual variation, GS hase tlupper hand here. Biparental
populations may be able to solve the issue of &thiQTL translations by using the whole
SNP marker collection. Lolium perenne GS-based dingemethods based on computer
simulations have been found to shorten the four-ggeale of breeding. On maize breeding
lines, GBS has been utilised to discover 55,000 $h#kers [27] and on elite wheat
breeding lines to evaluate high yield and stem rasistance. Using GWAS, a number of
traits in five important crops are shown in Figdre

Copyright © 2022 Authors Page | 33



Futuristic Trends in Biotechnolo
ISBN: 978-93-95632-83-6
IIP Proceedings, Volume 2, Bool6, Chapter 3
USE OF ARTIFICIAL INTELLIGENCE AND BIOINFORMATICS
FOR CROP IMPROVEMENT TO ENSUREUTURE FOOD SECURIT

W Rice Barley Maize I/
‘ \’
N\ ) §

v

1. Seed vigor = -
2. Bacterial blight-resistant 1. Photoperiod response 1. Plant and ear height

gene, Xa43(t) 2. Nitrogen use efficiency 2. Male inflorescence size

3. Grain shape and grain 3. Spikelet number and grain 3. Lipid biosynthesis
weight yield 4. Root morphology traits

4. Plant architecture
5. Salt tolerance, OsSTL1

and OsSTL2

| Wheat
Sorghum ? [
' /

\ \ 1. Floret fertility, assimilate

Y R 4N

partitioning,
and spike morphology traits
2. Total spikelet number

1. Grain quality traits
2. Plant architecture traits
3. Kernel composition
4. Grain size

Figure 2: Few Traits or Gene: Studied Via Genome Wide Associatiostudy (GWAS) of
5 Major Crops
(Createdin Biorender.com) (https://biorender.com)

V. CIS-REGULATORY ELEMENTS (CRES) FOR CROP BREEDING

Gene expressionsnay be controlled by regulating the -regulatory element
(promoters and enhancers) and regulators. CREselted to chromatin, which binds
proteins, but they are less expressive than genaking their discovery more difficult. F
those who wainto control rather than delete the gene, CRE targés an excellent choic
Researchers have been able to identify open chrmomegulatory sites by employir
bioinformatic approaches like as C-seq [28] and ATAGseq [29] as well as DNase
hyperseasitivity mapping, wor-counting, and conservatidrased sequence analy
CREs are still poorly understood, although conterapotechnologies have made it easie
identify regulatory domains, but experimental stuslystill needed to demonstrate a le
CRE's contribution to the target gene's expressdtas.termed Plant C-Acting Regulatory
Elements in Plant CARE's database of plant CREs. Juppression of the gene GRA
WIDTH 7 due to a mutation in the rice CRE, whiclsuked in rice with slent grains
despite its negative effect on yield, and the vemmain tomato seed compartment numt
caused by the regulation of WUSCHEL (WUS) and CLAMA(CLV3) promoters are just
few examples that have been documented so far. \Wimeatant library is (nerated utilising
the expression data of mutant lines, it is expetitatt CREs connected to desired traits we
be discovered.

VI. PROTEOMICS

Owing to postiranslational modifications (PTM), function, andc&tization, the
genome cannot be linked to MRNA and proteins duiéstetatic nature. To understand
role proteins play in the evolution of plants, st essential to examine their sture and
interactions. Proteomics is a h-performance method for identifying and quantify
protein performance in a given cell or organisme Three basic steps in the majority
proteomics systems are identification or quantifag protein extraion, and separation. /
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a consequence of recent, fast technical improvesriargroteomics, we have advanced to the
second generation of functional proteomics, whigmprises quantitative proteomics,
subcellular proteomics, different alterations, gmdtein-protein interactions (e.g., advances
in mass spectrometry equipment and methodologeatldpments in protein quantification).
The knowledge, resolution, and coverage of thetglasteome are expanded by a variety of
means. Several factors, including the availabitityresources, facilities, and applications
such as global or focused profiling, govern thetgwme research approach. It is feasible to
separate proteins with excellent reproducibilityd aresolution using two-dimensional
polyacrylamide gel electrophoresis (2D-PAGE), whicbmbines two-dimensional gel
electrophoresis (2-DE) with isoelectric focusingK) as the first dimension and SDS-PAGE
as the second. In addition, chromatographic separggchniques, including as gel filtration,
ion exchange, and affinity chromatography, may eduto separate proteins based on their
physicochemical features. Currently, peptide maggefprinting is the most used method for
identifying proteins. It starts with the breakdowhproteins into peptides, followed by the
exact mass determination of the peptides using msssctrometry (MS). In-gel
electrophoresis was developed to avoid the 2D-PA&3Hictions of gel-to-gel variance and
restricted repeatability (DIGE). DIGE is used talarstand how protein expression changes
in response to biotic and abiotic stimuli. Two-dmmnal gel electrophoresis is expanded to
three dimensions to prevent co-migration interfeesn It offers very precise identification of
proteins and PTMs using two distinct buffers wittiestent ion carriers [33].

MS identifies proteins based on peptide mass aghfentation (MS/MS) data using
a range of computer techniques. There are thregegha all. In order to convert molecules
into gas-phase ions, mass-based ion separaticerfisrmed in an electro or magnetic field,
followed by measurement of the separated ions \aitlcertain m/z value. lonizations
techniques include  electrospray ionization  (ESI), urface-enhanced  laser
desorption/ionization (SELDI), and matrix-assistader desorption ionizations (MALDI).
Gel-free techniques, such as quantitative appraatag-based labelling, metabolic labelling,
and label-free methods, may mitigate the disadggstaf gel-based methods, such as their
inability to segregate the whole proteome and paemtification of less abundant proteins.

Quantitative proteomics is also required for thediing of important proteome
alterations, such as expression, interaction, andiffnation that are related with genetic
differences and/or observable phenotypic changesoirectly differentiate between proteins
prior to 2-D electrophoresis in DIGE (Differenti@lel Electrophoresis), protein samples are
tagged with fluorescent dyes. ICAT (Isotope-CoddtinRy Tagging) use in vitro isotopic
labelling to quantify protein, with labelled tryptpeptides separated by chromatography and
subsequently identified by mass spectrometry. Usiaobaric tags, iTRAQ (Isobaric Tagging
for Relative and Absolute Quantification) measupesteins. Breeders use this method to
identify markers for biotic and abiotic stressonsarder to develop genetically modified
crops. Stable Isotope Labelling by Amino Acid inliGeulture (SILAC) employs in vivo
labelling of cell populations maintained in N14 Mi5 media and has been shown to be
successful in identifying proteome anomalies indubg post-translational changes under
stress [34]. For complicated multidimensional protnalysis, MudPIT (Multi-Dimensional
Protein Identification Technology) is used. Afteparating digested proteins using biphasic
or triphasic microcapillary columns, tandem masecspmetry is performed. Using this
technology, the processes that regulate the quaotitrice tillers have been uncovered.
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Figure 3 depicts the approachesd in proteome studies, whereas Table 2 lists thm

databases utilized in proteomic reses

Different
techniques used in
proteomics and
their applications

Figure 3: Different Techniques used in Proteomic Studies (Createth Biorender.com)
(https://biorender.com)

Table 2: Databases for Proteomic study

Database

Link

Swiss Institute of Bioinformatics’ Expa
SWISS-2DPAGE database

http://au.expasy.org/ch2d/

Kazusa DNA Research Institute

Cyano2Dbase

http://bacteria.kazusa.or.jp/cyano_legacy/S
hocystis/cyano2D/index.ht

rice proteome database

http://gene64.dna.affrc.go.jp/RF

NottinghamArabidopsis Stock Centr
(NASC) Proteomics database

http://proteomicsrabidopsis.info/

SUB-cellular location database fArabidopsis
proteins (SUBA)

http://suba.plantenergy.uwa.edu

The soybean proteome datat

http://proteome.dc.affrc.go.jp/c-
bin/2d/2d_view_map.cgi

The Arabidopsis Protein Phosphorylatic
Site Database (PhosPhAt)

http://phosphat.mpimgelm.mpg.de

Protein data bank, PDB

http://www.pdb.org/pdb/home/home

The RIKEN SGPI

http://lwww.rsgi.riken.go.jp/rsgi_e/index.ht

Genomes TO Protein structures and func
(GTOP) database

http://spock.gergnig.ac.jp/~genome/gtop.ht

CATH

http://www.cathdb.info/

Structural Classification of Proteins (SCC
database

http://scop.mrdmb.cam.ac.uk/sco

PRoteomicdDEntification database (PRID

https://www.ebi.ac.uk/pride/

Peptide Atlas

http://www.peptideatlas.org/

Mass  Spectrometry Interactive  Virtt

Environment (MassIVE)

https://massive.ucsd.edu/ProteoSAFe/static
sive.jsp

Plant Proteomics Database

http://ppdb.tc.cornell.edu/

(PPDB)

1001 Proteomes (Discontinu https://www.heazleome.org/tools.h
GelMap https://www.gelmap.de/

Peptide Atlas SRM Experime . . .
Library (PASSEL) http://www.peptideatlas.org/pas:
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VII. TRANSCRIPTOMICS

The genome, as previously said, is fixed and hemedle to reflect the level of gene
expression. As a result, the expression level & genome may be measured using
transcriptomic methods. Transcription makes up raaal+2% of the functioning genome. To
discover cis-regulatory patterns in gene expressmedict gene function, and screen
potential new genes, transcriptomics uses highdtfitput gene expression analysis. This
expressed genome may be studied using transcriggpmihich studies how genes are
expressed in an organism in a variety of situatitissues (spatial transcriptome), and time
periods (temporal transcriptome). These approachies) as microarrays and GeneChips,
may offer complete gene expression profiles foridgewange of species, as is well known. It
is becoming more effective to sequence short stsppieexpressed RNAs, including sSRNAs,
in genome-sequenced species. Co-expression andacaimp studies may benefit from
increased public datasets that have been devebpadesult of recent initiatives in the area
of transcriptomics.

In the 1970s and 1980s, reverse transcriptase s&s to convert cDNA into RNA
transcripts in the silk moth [35], and in the 1998anger sequencing was used to sequence
RNA transcripts as expressed sequence tags (EShiE)) are basically used to estimate the
gene composition of an organism [36]. After randeaguencing in an unbiased cDNA
library, ESTs are clustered into groups of tragecsequences using sequence-clustering
and/or assembly approaches. Next, the number ofsB@th unique identifiers for each
cDNA library and/or sequence cluster is tallied dstimate the quantity of transcripts
expressed in each tissue. This concept has also ussl in the digital differential display
(DDD) tool of the NCBI's UniGene database, whicls baen utilised in substantial cDNA
research for several taxa, including plants. Laterthern blotting and quantitative reverse
transcription polymerase chain reaction (qQRT-PCRgrew utilised to quantify RNA
transcripts. Since none of these methods addrefisedcomplete transcriptome, the
Sequencing-based Serial Analysis of Gene Expre¢SAGE) was developed in 19957.
More than 10 short specific tags (13—-15 bp) arecatamated and cloned from each mRNA
present in a sample to generate a SAGE library.sBEogiencing of selected clones from the
SAGE library makes the efficient collection of tsanipt tag sequences feasible. To identify
the genes corresponding to each SAGE tag, a dathsgenome sequences or a large
collection of expressed sequence tags (ESTSs) isreety Several versions of the fundamental
protocol (MAGE, SADE, microSAGE, miniSAGE, longSAG&uUperSAGE, deepSAGE,’'5
SAGE, etc.) have been developed to improve andrekiiee value of SAGE.

Massive parallel signature sequencing is anothejueseing-based technique
(MPSS). MPSS uses a 17-20 bp signature sequencdontee 3' end to identify mRNA.
Initially, each distinctive sequence is cloned omticrobeads. This approach guarantees that
a microbead has just one kind of DNA sequencesEquencing and measuring, the flow cell
comprises an array of microbeads. The signatureesegs (MPSS tags) of an MPSS dataset
are evaluated, compared to all other signatures,tia@ number of signatures with similar
sequences is counted. Accessible online at httpsémdel.edu are databases containing
MPSS information on various plant species, inclgdiévabidopsis, rice, grapes, and
Magnaporthe grisea (rice blast fungus). IrArabidopsis, high-density TSS mapping was
performed utilising the newly published CT-MPSS Inoet for quantitative investigation of
the 5’ end of transcripts coupled with the cap-trappetsgy for full-length cDNA cloning.
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The data set oArabidopsis CT-MPSS tags is accessible through the plant ptentatabase
ppdb (http://www.ppdb.gene.nagoya-u.ac.jp), whiobvles rice andirabidopsis promoter
annotation. Many databases for plant transcriptaaearch are included in Table 3.

Table 3: Different Databases for Plant Transcriptonic Study

Database Link

Ppdb http://www.ppdb.gene.nagoya-u.ac.jp
ArrayExpress https://www.ebi.ac.uk/arrayexpress/
ATTED I http://atted.jp/

Genevestigator https://www.genevestigator.com/ghexjsp
ﬁrRagl;(jopss Gene Expression D"’lt‘r’lb"’lsﬁttp://www.arexdb.org/index.jsp
RICEATLAS http://bioinformatics.med.yale.edu/rickeat

VIIl. METABOLOMICS

Metabolomics is the comprehensive and multidimeraistudy of metabolism that
identifies metabolites by using a variety of anabtt methods and bioinformation.
Metabolomics is the study of metabolism. It is polesto compare the metabolomes of
different plants, although this is considerably endifficult. Chemical-level phenotyping and
diagnostic assessment is inferior to metabolomioses metabolomics are able to
simultaneously examine a huge number of metabanesquantitatively analyse each one of
them. Researchers may get a better understanditgpwfcells react to changes in their
internal and external environments by using comgmelve metabolic profile data sets.
Genetic variants alter metabolic profiles, and cisahphenotypes may be utilised to identify
genes involved in certain pathways. Recent yearge hseen several technological
advancements in metabolomics equipment. Analyzimgabolomics data begins with the
collection of metabolic fingerprints from variousadytical methods. Some of the sample
categorization methods used in conjunction withifSude gas chromatography (GC), high-
performance or ultra-performance liquid chromatpbsa(LC), and capillary electrophoresis
(CE). CEMS is particularly useful for biologicalroponent isolation and analysis because of
its high sensitivity [38].

Data processing in metabolomics is essential teraehing biological significance.
Principal component analysis (PCA), hierarchicalstér analysis (HCA), and self-
organization mapping (SOM) are often used to dassamples and/or metabolites. Gene
expression profiles of certain genes encoding eesyemgaged in certain pathways are used
in combination with the visualisation of metabgtiofile on metabolic maps. The study of
plants’ metabolic processes is a difficult one,ilyet necessary if we are to fully appreciate
the growth and development of plants. It is posstbl get a better knowledge of plant cell
systems via the use of metabolomics. Our understgndf plant cell processes via
metabolomics may help us develop molecular breetbnocrease plant productivity and
functionality in areas such as stress tolerancermaceutical manufacturing, functional
meals and biomaterial production.
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IX. SYSTEMS BIOLOGY

Several plant species have produced vast amountkataef from sources like the
genome, transcriptome, proteome, metabolome, aiggrepme in recent years. It was not
able to fully comprehend the molecular foundatiohsomplex traits and biological networks
due to their independent study. A systems biolagghique including the integration of
diverse omics data, modelling, and prediction oflut@ processes is necessary to
comprehend the flow of biological information ungerg complex characteristics. This
technique permits a comprehensive understandintpeofdynamic system in which many
levels of biological structure interact with thetexal environment to exhibit phenotypic.
The fundamental objectives of crop biology reseanehthe maximisation of production and
the minimization of losses resulting from a rangdestoess situations. The solution is also
complicated due to the complexity of the subjeche Tintegration of transcriptomics,
proteomics, and metabolomics considerably simglifilee discovery and investigation of
complex plant regulatory networks. Consequentlgieays biology emerges as an intriguing
multidisciplinary topic of study that combines largmounts of omics data with well-
developed mathematical models to test hypothesdsfa@mcast biological systems. The
processing, scaling, and analysis of multidimerediatatasets in order to extract relevant
biological discoveries remains the major barrieotaics data integration. For the integration
and analysis of datasets produced by several piatfoit is important to gather, prepare,
standardise, and integrate data into a single mafhen, clusters of genes, proteins, and
metabolites with similar structures were identifiedultiple systems exist to aggregate
multidimensional omics data, such as mixOmics, GBiRhodelling, Integromics, sparse
Multi-Block Partial Least Squares, and COVAIN. Taenethods provide the study of plant
metabolism and the knowledge of the molecular mees behind agronomically significant
plant phenotypes. To identify light-specific metid@nd regulatory markers in rice [40],
transcriptomics, metabolomics, and genome-scale patational modelling were used.
Transcriptomics, proteomics, and metabolomics datee evaluated in 2020 to supplement
information that had previously provided insightthe processes behind the fertility change
in a thermosensitive male sterile line of pigeoapfor use in two-line hybrid breeding [41].
Given that phenotypic variance is not just detesdirby DNA but also by biological
regulation in response to the environment, multcsrdata are widely used for phenotypic
prediction. Reconstructing pathways and networkksing transcriptome, proteome, and
metabolome data may aid in the understanding o$ethegulatory networks and their
functional interaction with biological entities. @hight normalisation of omics data yields a
similarity matrix, which is then converted into adjacency matrix and, lastly, a directed
graph or network abstraction. Global gene co-eximesnetworks are a potential tool for
exploring and predicting specialised metabolitehpatys with a high throughput. The last
phase in network biology is dynamic modelling, whgrovides an exhaustive understanding
of how gene expression influences protein actiuityplants in response to environmental
stimuli. By bridging the gap between genotype ahdnotype and gaining an understanding
of the complexity of multiple traits, systems bigjo offers tremendous potential for
sustainable agriculture. It is useful for modellengd evaluating multigenic traits linked with
agricultural production, such as plant architectunérogen use efficiency, water use
efficiency, and resistance to biotic and abiotiest. Due to recent developments in high-
throughput experimental analysis and computer agpdicis now possible to integrate many
fields to explain any complicated characteristisirlg well-designed mathematical models
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based on time series data, one may develop a sydieiog\-based breeding strategy
finding possible candidate genes for use inding programmes.

X. MACHINE LEARNING

Machine Learning (ML) is a subfield of computereswe that uses statistical ¢
mathematical techniques to train models withouediprogrammin [42]. ML develops a
variety of algorithms that learn from sample cand train the predictive model. Sami43].
ML is the study of programming computers to leamont data. By simplifying functions
annotation of genomes and allowing -time, highthroughput phenotyping of agronon
traits in the greenhouse and fieldachine learning helps the discovery of agronomyc
valuable economic regions. ML is a technique t@ @deatalysis that enables computers to I
patterns over time. ML models for GS have the hewéflearning the pattern directly fro
the data, enablgithem to account for all variations, interactioasgd environmental factor
For huge, heterogeneous, and formless datasetsasubose produced by optical imaging
sequencing, ML may provide significant benefits rotraditional analytic approact. Crop
breeders may use machine learning to rapidly plypeoplants and to examine mass
databases for patterns, such as DNA seqrto-characteristic connections. Machi
learning algorithms may employ hi-throughput phenotyping and genomic datautomate
elements of the gene discovery process that argempily difficult to automate, such
genome labelling and picture interpretation. Fig4 depicts the fundamental pictL
interpretation procedure. Although several reseleste used machine learning (ML) for C
the subject of deep learning (DL) has yet to bedhghly investigate:
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Figure 4: Basic Workflow of Image Interpretation

1. High throughput crop phenotyping: It is critical for the study of relationships ancp
improvement that plant phenotyping be used to ewaludunctional and structur
characteristics at the cellular and organism levelant phenotypes are becoming e
important in the interpretation of genetic datagemomics research and sequent
technology improve at a rapid pace. Conventionanplyping is often a bottleneck tf
limits the number of features and crops that magdsessed since it is subjee, error-
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prone, labour expensive and time consuming. Higbtiihput imaging and automatic
sensors, along with machine learning, have enaioleotic high-throughput phenotyping
to be established, overcoming the limitations afvamtional human-based phenotyping
by enabling the rapid generation of phenotypicatuiees and features across large
populations [2]. [2]. Image or sensor detectionerpitypic data classification, feature
guantification, and forecasting based on specifizdets or algorithms are four key
features of high-throughput phenotyping (Figure Bigh-throughput phenotyping was
evaluated in the field by Jose Luis Araus andElilCairns, respectively. An unsupervised
identification technique was used to measure, aggrand categorise the severity of
Glycine max foliar stressors, including bacterialdafungal infections, as well as
nutritional deficiency, according to a recent stjidif]. Machine learning requires large
datasets for training and model building. Non-digant and problematic predictions
may be made with a small training set but it istiycend time-consuming to collect large
datasets when crops only get measured once aAweaaty limited number of research
institutes and organisations have the ability to Mb-based phenotyping with high
throughput. It will be important to substantiallgduce acquisition and operational costs
in order to make ML-based phenotyping widely apgiie on future farming.

2. Machine learning in crop genomics researchSeveral applications of machine learning
include genome assembly, recurrent inference ofegesgulatory networks, and
identification of genuine Single Nucleotide Polymioisms (SNPs) in polyploid plants.
Optimizing polyploid genomic assemblies with coropted redundancy may be achieved
via the application of machine learning. Ma et [d5] provide a detailed review of
machine learning algorithms and associated opercedR tools relevant for plant data
analysis. A comprehensive genome assembly and aiorotprovides the basis for
monitoring genetic changes within a plant species far understanding the shape and
function of plant genes, both of which are esséstieps in the process of agricultural
trait discovery. For interactive inference of geagulatory networks, ML-based methods
that can incorporate diverse types of regulatogpas from multiple data sources have
gained popularity. Consequently, inferring regulgtelement-gene links is a potential
field for uncovering unexplored crop improvemenpogunities.

GWAS is currently one of the most often utilisegiegaches for detecting MTA
in plant species. Traditional GWASs are excellemt itlentifying SNP markers with
considerable effects on complex traits, but they ngaore a variety of interconnected
biological processes and mechanisms that influgheephenotypic of complex traits
simultaneously. Variable significance values mayused to identify high-resolution
variant-trait associations in ML-mediated GWASseTimplementation of this important
genetic strategy in practical plant-breeding progrees may be enhanced by using
complicated mathematical approaches such as matdanang (ML) algorithms. (ML-
based GWAS for Identifying QTL Underlying SoybeaieM and Its Components)

3. Deep learning: In the genomics era, multifaceted molecular pheguedyinvolved in
information relay, namely the structure, modifioati function, and evolution of elements
in DNA, RNA, and protein, along with their interamts, are beginning to be revealed at
scale and even at lower cost, allowing fine-graiaedluation of information transfer and
transformation along Francis Crick's 1957 "centtajma” [46]. In data mining, it has
been shown that deep learning models are very tefeén predicting molecular
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phenotypes from upstream molecular phenotypes wectty from genomic DNA
sequences.

Deep learning is a subfield of machine learning tbeuses on densely connected,
artificial neural network-trained networks. Artiiat Neural Networks (ANN) are well-
known strategies for dealing with machine learnisgues that have been studied since
the 1940s and are based on the nervous systemintdla [45]. A single artificial neural
network (ANN) consists of several hidden layers ane input. Deep Neural Network
(DNN) is a new machine learning discipline andetpf artificial neural network. DNNs
differ from ANNSs in that they contain many more doh layers; hence, the quantity of
data needed increases as the DNN's predictive tyabificreases. In genomics,
transcriptomics, proteomics, metabolomics, andesgstbiology, deep learning has been
used to address complicated biological challenges.

Deep learning, which utilises a high number of nesrand models such as CNN,
RNN, and MLP, is applicable to GS [47]. The inpaydr of these models consists of
marker data, whereas the output layer containorsgs with several hidden layers. The
optimal model performance is determined by hypenpater selection, which is a time-
consuming and computationally costly process. Tty of deep learning models to
generate ab initio forecasts on unique, previousknown sequence data (data not within
the training set) is perhaps the most notable cheniatic, which has numerous important
ramifications, whereas the number of high-capaaitg trainable characteristics is the
most advantageous. Despite the huge number of igeratations in a real population,
deep learning models can only be trained on a ssoaket of them to predict the effects
of all other variants (i.e., the whole mutation ;gga Knowledge may move from well-
studied species (such Asabidopsis) to closely related but less well-studied spe(sesh
asArabidopsis) (such as other species in the Brassicaceae). Wiy variants within a
crucial coding region (such as a QTL for a certaiait) are in tight linkage
disequilibrium, we may utilise in silico mutagersesd transfer them from one haplotype
to the next, therefore prioritising causative wvatsa Such a break in linkage
disequilibrium would be labor-intensive and difficto scale up in wet lab research, and
practically impossible in nature. Using a largelexdion of deep learning models, each
targeting a different molecular phenotype, or atmtakk learning model addressing
multiple molecular phenotypes simultaneously, itpsssible to predict not only the
causative mutation underlying a QTL, but also iikely molecular mechanism.
Importantly, while using the breeding-by-editingpagach, we are no longer restricted to
the known beneficial natural variations. Instead,have unrestricted flexibility to design
different beneficial alleles based on the 'knowksdyd the biological processes of interest
possessed by our deep learning algorithms. Rodfgeiaizet al. 18] altered the promoter
of the tomato CLAVATA3 gene (SICLV3) to improve ftusize and inflorescence
branching. Utilizing generative models in synthdticlogy is another way for producing
genetic components with defined functionality. O&sghe growing interest in generative
models like variational autoencoders and generataversarial networks, their
applications in synthetic biology remain restrictétbing GANs to construct synthetic
DNA sequences encoding for antimicrobial peptidesne example.
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Xl. CONCLUSION

It is crucial to adapt plant breeding curriculumtbe digital age. Researchers and
breeders must find a balance between machine-gedesaiggestions and farmer desires.
Developing information for plant breeding is inetige if researchers lack the capacity to
use that knowledge. Information—action strategwesich integrate additional abilities and
viewpoints to facilitate the development of knowgedfor enhanced breeding and smarter
farming, are necessary. Agriculture will dependNext-Generation Al techniques to make
judgments and recommendations based on massivéhadats indicative of the environment
and the systems biology of a plant. Breeding waldble to perform at greater levels than
ever before because to Next-Gen Al's capacity tisseitdiverse and complex data in an
effective manner. The use of ML and DL has led igmiicant phenomics and genomics
findings. As promising as these discoveries arey tare not yet adequate to contemplate
depending only on technology to accelerate thedimgeprocess, which remains a difficult,
time-consuming, and costly endeavour. Despite gaitise efficiency of data generation, the
plant research community still confronts difficelti with translational procedures. In
isolation, genomes, epigenomics, transcriptomiostepmics, metabolomics, and phenomics
continue to be largely distinct fields of study ttipmovide scant insight. To expedite plant
development, it is necessary to concurrently use iategrate multi-omics data. Utilizing
enormous quantities of genetic data from a varietysources and formats for crop
development is fraught with considerable difficedti in agriculture. To address these
problems, novel breeding tactics and bioinformatigzhnology must be used to turn genetic
data into advances in agricultural production areddystability. Using meta-QTL analysis,
GWAS, and genetic screens, researchers may unsigyreficant gene-trait connections more
quickly. While genome editing is an effective methfor rapidly introducing beneficial
mutations into champion crops, GS enhances seteetitwiency without needing knowledge
of genetic drivers. ML algorithms may employ higinetughput phenotyping and genomic
data to automate difficult-to-automate aspectsefgene discovery process, such as genome
annotation and image interpretation. Combining neehnologies and methods will allow
future plant breeding to achieve the crop growth reecessary for food security.

LIST OF ABBREVIATIONS

BAC Bacterial Artificial Chromosomes
GWAS Genome-Wide Association Studies
QTL Quantitative Trait Loci

DNA  Deoxyribonucleic Acid

RNA  Ribonucleic Acid

ML Machine Learning

GS Genomic Selection

DL Deep Learning

NGS Next-Generation Sequencing
EST Expressed Sequence Tag

MTA  Marker-Trait Associations

LD Linkage Disequilibrium

GBS Genomic Based Selection
CREs Cis-Regulatory Elements

MS Mass Spectrometry
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cDNA Complementary DNA

SAGE Serial Analysis of Gene Expression
PAGE polyacrylamide gel electrophoresis
SNP Single Nucleotide Polymorphism
DNN  Deep Neural Network

ANN  Artificial Neural Networks

CNN Convolutional Neural Networks
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